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Abstract. We propose a framework for learning new target tasks by
leveraging existing heterogeneous knowledge sources. Unlike the tradi-
tional transfer learning, we do not require explicit relations between
source and target tasks, and instead let the learner actively mine trans-
ferable knowledge from a source dataset. To this end, we develop (1) a
transfer learning method for source datasets with heterogeneous feature
and label spaces, and (2) a proactive learning framework which pro-
gressively builds bridges between target and source domains in order to
improve transfer accuracy. Experiments on a challenging transfer learn-
ing scenario (learning from hetero-lingual datasets with non-overlapping
label spaces) show the efficacy of the proposed approach.

1 Introduction

The notion of enabling a machine to learn a new task by leveraging an auxiliary
source of knowledge has long been the focus of transfer learning. While many dif-
ferent flavors of transfer learning approaches have been developed, most of these
methods assume explicit relatedness between source and target tasks, such as the
availability of source-target correspondent instances ( e.g. multi-view /multimodal
learning), or the class relations information for multiple datasets sharing the
same feature space (e.g. zero-shot learning, domain adaptation), etc. These
approaches have been effective in their respective scenarios, but very few limited
studies have investigated learning from heterogeneous knowledge sources that lie
in both different feature and label spaces. See Sect. 2 for the detailed literature
review.

Given an unforeseen target task with limited label information, we seek to
mine useful knowledge from a plethora of heterogeneous knowledge sources that
have already been curated, albeit in different feature and label spaces. To address
this challenging scenario we first need an algorithm to estimate how the source
and the target datasets may be related. One common aspect of any dataset for
a classification task is that each instance is eventually assigned to some abstract
concept(s) represented by its category membership, which often has its own
name. Inspired by the Deep Visual-Semantic Embedding (DeViSE) model [7]
which assigns the unsupervised word embeddings to label terms, we propose
to map heterogeneous source and target labels into the same word embedding
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space, from which we can obtain their semantic class relations. Using information
from the class relations as an anchor, we first attempt to uncover a shared latent
subspace where both source and target features can be mapped. Simultaneously,
we learn a shared projection from this intermediate layer into the final embedded
labels space, from which we can predict labels using the shared knowledge.

The quality of transfer essentially depends on how well we can uncover the
bridge in the projected space where the two datasets are semantically linked.
Intuitively, if the two datasets describe completely different concepts, very little
information can be transferred from one to the other. We therefore also propose
a proactive transfer learning framework which expands the labeled target data
to actively mine transferable knowledge and to progressively improve the target
task performance.

We evaluate the proposed combined approach on a unique learning problem
of a hetero-lingual text classification task, where the objective is to classify a
novel target text dataset given only a few labels along with a source dataset in a
different language, describing different classes from the target categories. While
this is a challenging task, the empirical results show that the proposed approach
improves over the baselines.

The rest of the paper is organized as follows: we position our approach in
relation to the previous work in Sect. 2, and formulate the heterogeneous transfer
learning problem in Sect. 3. Section 4 describes in detail the proposed proactive
transfer learning framework and presents the optimization problem. The empir-
ical results are reported and analyzed in Sect.5, and we give our concluding
remarks and proposed future work in Sect. 6.

2 Related Work

Transfer Learning with Heterogeneous Feature Spaces: Multi-view repre-
sentation learning aims at aggregating multiple heterogeneous “views” (feature
sets) of an instance that describe the same concept to train a model. Most
notably, [30] proposes Deep Canonically Correlated Autoencoders (DCCAE)
which learn a representation that maximizes the mutual information between
different views under an autoencoder regularization. While DCCAE is reported
to be state of the art on multi-view representation learning using Canonical
Correlation Analysis (CCA) [4], their approach (as well as other CCA-based
methods) strictly require access to paired observations from two views belong-
ing to the same class. [3] proposes translated learning which aims to learn a tar-
get task in the same label space as the source task, using source-correspondent
instances such as image-text parallel captions as an anchor. [34] proposes Hybrid
Heterogeneous Transfer Learning (HHTL) which extends the previous trans-
lated learning work with an added objective of learning an unbiased feature
mapping through marginalized stacked denoising autoencoders (mSDA), given
correspondent instances. [29] develops a similar approach in bilingual content
classification tasks, and proposes to generate correspondent samples through an
available machine translation system. [22] proposes a Transfer Deep Learning
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(TDL) framework for fine-tuning intermediate layers of a target network with
transferred source data, where the mapping between source and target layers
is learned from corresponding instances. [5] propose the Heterogeneous Feature
Augmentation (HFA) method for a shared homogeneous binary classification
task, which relaxes the previous limitations that require correspondent instances,
and instead aims to discover a common subspace that can map two heteroge-
neous features. Our approach generalizes all the previous work by allowing for
heterogeneous label spaces between source and target, thus not requiring explicit
source-target correspondent instances or classes.

Transfer Learning with a Heterogeneous Label Space: Zero-shot learn-
ing aims at building a robust classifier for unseen novel classes in the target
task, often by relaxing categorical label space into a distributed vector space via
transferred knowledge. For instance, [19] uses image co-occurrence statistics to
describe a novel image class category, while [7,8,15,25,28,31,33] embed labels
into semantic word vector space according to their label terms, where textual
embeddings are learned from auxiliary text documents in an unsupervised man-
ner. More recently, [13] proposes to learn domain-adapted projections to the
embedded label space. While these approaches are reported to improve robust-
ness and generalization on novel target classes, they assume that source datasets
are in the same feature space as the target dataset (e.g. image). We extend the
previous research by adding the joint objective of uncovering relatedness among
datasets with heterogeneous feature spaces, via anchoring the semantic relations
between the source and the target label embeddings.

Domain Adaptation approaches aim to minimize the marginal distribution
difference between source and target datasets, assuming their class conditional
distribution remains the same for homogeneous feature and label spaces. This
is typically implemented via instance re-weighting [2,11,14], subspace mapping
[32], or via identification of transferable features [16]. [24] provide an exhaustive
survey on other traditional transfer learning approaches.

Active learning provides an alternative solution to the label scarcity prob-
lem, which aims at reducing sample complexity by iteratively querying the most
informative samples with the highest utility given the labeled sampled thus far
[21,26]. Transfer active learning approaches [2,6,12,27,36] aim to combine
transfer learning with the active learning framework by conditioning transferred
knowledge as priors for optimized selection of target instances. Specifically, [9]
overcomes the common cold-start problem at the beginning phase of active learn-
ing with zero-shot class-relation priors. However, many of the previously pro-
posed transfer active learning methods do not apply to our setting because they
require source and target data to be in either homogeneous feature space or the
same label space or both. Therefore, we propose a proactive transfer learning
approach for heterogeneous source and target datasets, where the objective is
to progressively find and query bridge instances that allow for more accurate
transfer, given a sampling budget.

Our contributions are three-fold: we propose (1) a novel transfer learning
method with both heterogeneous feature and label spaces, and (2) a proactive
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transfer learning approach for identifying and querying bridge instances between
target and source tasks to improve transfer accuracy effectively. (3) We evaluate
the proposed approach on a novel transfer learning problem, the hetero-lingual
text classification task.

3 Problem Formulation

We formulate the proposed framework for learning a target multiclass classifi-
cation task given a source dataset with heterogeneous feature and label spaces
as follows: We first define a dataset for the target task T = {Xr,YT,Z1},

with the target task features X = {x,(];)}f\fl for xp € RM7  where Ny is the
target sample size and My is the target feature dimension, the ground-truth
labels Zt = {zfrl)}ij\fl, where z1 € Zp for a categorical target label space Zr,

and the corresponding high-dimensional label descriptors Yo = {ysll,)}i\fl for
yt € RM? where Mg is the dimension of the embedded labels, which can be
obtained from e.g. unsupervised word embeddings, etc. We also denote L7 and
ULt as a set of indices of labeled and unlabeled target instances, respectively,
where |Lr| 4 |ULr| = Np. For a novel target task, we assume that we are given
zero or a very few labeled instances, thus |Ly| = 0 or |Ly| < Np. Similarly, we
define a heterogeneous source dataset S = {Xg,Ys,Zs}, with Xg = {x(si)}fisl
for xg € RMs, Zg = {z(sl)}f\fl for zg € Zg, Yg = {y(sl)}f\fl for yg € RM=,
and Lg, accordingly. For the source dataset we assume |Lg| = Ng. Note that
in general, we assume Mr # Mg (heterogeneous feature space) and Zr # Zg
(heterogeneous label space).

Our goal is then to build a robust classifier f : Xr — Zp for the target
task, trained with {x$)7y$),z$)}ie r as well as transferred knowledge from

{X(sl)’y(sl)vz(sl)}ieLs'

4 Proposed Approach

Our approach aims to leverage a source data that lies in different feature and
label spaces from a target task. Transferring knowledge directly from hetero-
geneous spaces is intractable, and thus we begin by obtaining a unified vector
representation for different source and target categories. Specifically, we utilize
a skip-gram based language model that learns semantically meaningful vector
representations of words, and map our categorical source and target labels into
the word embedding space (Sect.4.1). In parallel, we learn compact represen-
tations for the source and the target features that encode abstract information
of the raw features (Sect.4.2), which allows for more tractable transfer through
affine projections. Once the label terms for the source and the target datasets
are anchored in the word embedding space, we first learn projections into a
new latent common feature space from the source and the target feature spaces
(Wg and W), respectively, from which W¢ maps the joint features into the
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Fig. 1. An illustration of the proposed approach. Source (20 Newsgroups: English) and
target (Reuters Multilingual: French) datasets lie in different feature spaces (xs € RMs
x1 € RMT) and describe different categories (Zs # Zr). First, categorical labels are
embedded into the dense continuous vector space (e.g. via text embeddings learned
from unsupervised documents.) The objective is then to learn Wi, Wg, and W
jointly such that Wg and W map the source and target data to the latent common
feature space, from which W¢ can project to the same space as the embedded label
space. Note that the shared projection Wg is learned from both the source and the
target datasets, thus we can more robustly predict a label for a projected instance by
finding its nearest label term projection.

embedded label space (Sect.4.3). Lastly, we actively query and expand the
labeled set L7 to jointly improve the joint classifier W¢ and the transfer accuracy
(Sect.4.4). Figure 1 shows the illustration of the proposed approach, visualized
with the real datasets (20 Newsgroups and Reuters Multilingual Datasets).

4.1 Language Model Label Embeddings

The skip-gram based language model [20] has proven effective in encoding seman-
tic information of words, which can be trained from unsupervised text. We use
the obtained label term embeddings as anchors for source and target datasets,
and drive the target model to learn indirectly from source instances that belong
to semantically similar categories. In this work, we use 300-D word embeddings
trained from the Google News dataset! (about 100 billion words).

4.2 TUnsupervised Representation Learning for Features

In order to project source and target feature spaces into the joint latent space
effectively, as a pre-processing step we first obtain abstract and compact rep-
resentations of raw features to allow for more tractable transformation. Unlike
the similar zero-shot learning approaches [7], we do not use the embeddings
obtained from a fully supervised network (e.g. the activation embeddings at the

! word2vec: https://code.google.com/archive/p/word2vec/.
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top of the trained visual model), because we assume the target task is scarce
in labels. For our experiments with text features, we use the latent semantic
analysis (LSA) method [10] to transform the raw tf-idf features into a 200-D
low-rank approximation.

4.3 Transfer Learning for Heterogeneous Feature and Label Spaces

We define Wg and Wt to denote the sets of learnable parameters that project
source and target features into a latent joint space, where the mappings can
be learned with deep neural networks, kernel machines, etc. For simplicity, we
treat Wg and W as linear transformation layers, thus Wg € RMsxMco an(d
Wt € RMrxMe for projection into the Mc-dimension common space. Similarly,
we define Wy € RMc*Me which maps from the common feature space into the
embedded label space.

To learn these parameters simultaneously, we solve the following joint opti-
mization problem with hinge rank losses (similar to [7]) for both source and
target.

|Ls| |Lr|

1(SW) + (T 1
Wf,Ws,WT |LS| Z |L |Z ( )

where
1(SD)=3" max(0,e—xP W Weyg " +x8 Ws W5
y£yS
UTD)=3" max0, e~ xF W Weg 9+ xF W W5 )
y#yY

where [(-) is a per-instance hinge loss, ¥ refers to the embeddings of other label
terms in the source and the target label space except the ground truth label of
the instance, and e is a fixed margin. We use € = 0.1 for all of our experiments.

In essence, we train the weight parameters to produce a higher dot product
similarity between the projected source or target instance and the word embed-
ding representation of its correct label than between the projected instance and
other incorrect label term embeddings. The intuition of the model is that the
learned Wy is a shared and more generalized linear transformation capable of
mapping the joint intermediate subspace into the embedded label space.

We solve Eq. 1 efficiently with stochastic gradient descent (SGD), where the
gradient is estimated from a small minibatch of samples.

Once Wg, W, and Wr are learned, at test time we build a label-producing
nearest neighbor (NN) classifier for the target task as follows:

NN(xT) = argmax XTWTnyzT (2)
zEZT
where y, maps a categorical label term z into its word embeddings space. Simi-

larly, we can build a NN classifier for the source task as well, using the projection
WsWrk.
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4.4 Proactive Transfer Learning

The quality of the learned parameters for the target task W and W depends
on the available labeled target training samples (L7). As such, we propose to
expand Ly by querying a near-optimal subset of the unlabeled pool U Ly, which
once labeled will improve the performance of the transfer accuracy and ulti-
mately the target task, assuming the availability of unlabeled data and (limited)
annotators. In particular, we relax this problem with a greedy pool-based active
learning framework, where we iteratively select a small subset of unlabeled sam-
ples that maximizes the expected utility to the target model:

Xt = argmax U(xT) (3)

xTG{xg)}ieULT

where U(xT) is a utility function that measures the value of a sample x1 defined
by a choice of the query sampling objective. In traditional active learning, the
uncertainty-based sampling [17,26] and the density-weighted sampling strategies
[23,35] are often used for the utility function U(xT) in the target domain only.
However, the previous approaches in active learning disregard the knowledge
that we have in the source domain, thus being prone to query samples of which
the information can be potentially redundant to the transferable knowledge. In
addition, these approaches only aim at improving the target classification per-
formance, whereas querying bridge instances to maximally improve the transfer
accuracy instead can be more effective by allowing more information to be trans-
ferred in bulk from the source domain. Therefore, we propose the following two
proactive transfer learning objectives for sampling in the target domain that
utilize the source knowledge in various ways:

Maximal Marginal Distribution Overlap (MD): We hypothesize that the
overlapping projected region is where the heterogeneous source and target data
are semantically related, thus a good candidate for a bridge that maximizes the
information transferable from the source data. We therefore propose to select
unlabeled target samples (xr) in regions where the marginal distributions of
projected source and target samples have the highest overlap:

Unp (%) = min (zﬁT(xT|wT, Wp), ﬁs(xT|wswf)) (4)

where Pr and Ps are the estimated marginal probability of the projected target
and source instances, respectively. Specifically, we estimate each density with
the non-parametric kernel method:

Nt
R 1 i
Pr(xr[Wr, We) = o > Kn(xrWr Wi — x3 W Wy)
1=1

Ns
3 Kn(xrWrWe — x§ WsWy) (5)

j=1

1

Ps(xp|Ws, Wg) = Ns
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Algorithm 1. Proactive Transfer Learning

Input: source data S, target data T, active learning policy U(-), budget B, query
size per iteration )
Randomly initialize Wg, W, Wg
for iter =1 to B do
1. Learn W¢, W, Wg by solving
|Ls| |Lr|

1 ; 1 ;
min_ - —— > (S + — 3"y 1W
We,Ws, Wr | Lg| ; (87 |Lr| ; (T™)

2. Query @ new samples
for g=1to Q do
i = argmax U(X(Ti))
i€UL7 o
UL~ : :ULT\{I}, Lt :=LrU {l}
end for

end for
Output: We, W, Wg

where K}, is a scaled Gaussian kernel with a smoothing bandwidth h. Solving
maxy.. min(Pp(xt), Ps(x7)) finds such instance xt whose projection lies in the
highest density overlap between source and target instances.

Maximum Projection Entropy (PE) aims at selecting an unlabeled tar-
get sample that has the maximum entropy of dot product similarities between a
projected instance and its possible label embeddings:

Upg(xT) = — Z log(xyWr Wiy D) xp WpWey T (6)
zEZp

The projection entropy utilizes the information transferred from the source
domain (via Wg), thus avoiding information redundancy between source and
target. After samples are queried via the maximum projection entropy method
and added to the labeled target data pool, we re-train the weights such that
projections of the target samples have less uncertainty in label assignment.

To reduce the active learning training time at each iteration, we query a small
fixed number of samples (= @) that have the highest utilities. Once the samples
are annotated, we re-train the model with Eq. 1, and select the next batch of
samples to query with Eq. 3. The overall process is summarized in Algorithm 1.

5 Empirical Evaluation

We evaluate the proposed approach on a hetero-lingual text classification task
(Sect. 5.2) with the baselines described in Sect. 5.1.

5.1 Baselines

In our experiments we use a source dataset within heterogeneous feature and
label spaces from a target dataset. Most of the previous transfer learning
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(a) W_WENN (b) W_WESM (c) W_:NN () W_:SM (e) -SM

Fig. 2. The proposed method (a) and the baseline networks (b—e). At test time, the
nearest neighbor-based models (a, ¢) return the nearest label in the embedding space
() to the projection of a test sample, whereas the n-way softmax layer (SM) classifiers
(b, d, e) are trained to produce categorical labels from their respective final projection.
We use the notation W_ to refer to Wt and W, as they share the same architecture.

approaches that allow only one of input or output spaces to be heterogeneous
thus cannot be used as baselines (see Sect.2 for the detailed comparison). We
therefore compare the proposed heterogeneous transfer approach with the fol-
lowing baseline networks (illustrated in Fig. 2):

— W_WIT:NN (proposed approach; heterogeneous transfer learning network):
We learn the projections Wg, W, and W by solving the joint optimization
problem in Eq.1. At test time, we use the 1-nearest neighbor classifier (NN)
defined in Eq. 2 and look for a category embedding that is closest to the pro-
jected source (xg WgWe) or target instance (xt W Wye) at the final layer. We
use the notation W_ to denote a placeholder for a source model (WsW{:NN)
and a target model (WtWf:ININ), as they share the same architecture.

— W_Wf{:SM: We train the weights in the same way (Eq.1), and we add a
softmax layer (SM) at the top projection layer (word embedding space) in
replacement of the NN classifier.

— W_:NN ([7]; zero-shot learning networks with distributed word embeddings):
We learn the projections Wg € RMs*Me and W € RM1XMe Ly solving two
separate optimization problems for source and target networks respectively:

|Ls]| |Lr|

I‘IRI}D pA Zl ), mln Zl (TW) (7)

S
where the loss functions are defined in a similar way as in Eq. 1:

l(S(i)) = Z max|0, e—X(Si)Wsyg(i)+x(si)Ws§T]

5'7'531(i>
1(TW) Z max|0, efx(J)WTyrll:(j)JrXEg)WTf’T] (8)
yAyy

At test time, we use the NN classifier with projected source (xsWg) and
target (xr W) instances. The target task thus does not use the transferred
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information from the source task, but only uses the semantic word embeddings
transferred from a separate unannotated corpus. This baseline can be regarded
as an application of DeViSE [7] on non-image classification tasks.

— W_:SM: We train the weights with Eq.7, and we add a softmax layer.

— -:SM: We train two separate networks with logistic regression softmax layers
for source and target tasks with Xg and X, respectively.

5.2 Application: Hetero-Lingual Text Classification

We apply the proposed approach to learn a target text classification task given
a source text dataset with both a heterogeneous feature space (e.g. a different
language) and a label space (e.g. describing different categories).

The datasets we use are summarized in Table 1. Note that the 20 News-
groups? (English: 18,846 documents), the Reuters Multilingual [1] (French:
26,648, Spanish: 12,342, German: 24,039, Italian:12,342 documents), the R8 of
RCV-1? (English: 7,674 documents) datasets describe different categories with
varying degrees of relatedness. The original categories of some of the datasets
were not in the format compatible to our word embeddings dictionary. We man-
ually replaced those label terms to the semantically close words that exist in the
dictionary (e.g. sci.med — ‘medicine’, etc.).

Task 1: Transfer Learning for Scarce Target

Setup: We assume a scenario where only a small fraction of the target samples
are labeled (%r, = 0.1% or 1% depending on the size of the dataset) whereas
the source dataset is fully labeled, and create various heterogeneous source-
target pairs from the datasets summarized in Table 1. Table2 reports the text
classification results for both source and target tasks in this experimental setting.
The results are averaged over 10-fold runs, and for each fold we randomly select
%L, of the target train instances to be labeled as indicated in Table2. Bold
denotes the best performing model for each test, and * denotes the statistically
significant improvement (p < 0.05) over other methods.

Main results: Table2 shows that the proposed approach (WtWf:NN)
improves upon the baselines on several source-target pairs on the target clas-
sification task. Specificallyy, WtW£:NN shows statistically significant improve-
ment over the single-modal baseline (Wt:NN) on the source-target pairs
20NEWS—SP, 20NEWS—GR, R8—SP, R8—GR, and SP—RS8. The perfor-
mance boost demonstrates that the transferred knowledge from a source dataset
(in the form of Wy¢) does improve the projection pathway from the target
feature space to the embedded label space. Note that the transfer learning
(WtWT£:NN) from Reuters Multilingual datasets (FR, SP, GR, IT) to 20 News-
groups (20NEWS) dataset specifically does not improve over the single-modal
baseline (Wt:NN). The 20 Newsgroups dataset is in general harder to discrimi-
nate and spans over a larger label space than the Reuters Multilingual datasets,

2 http://qwone.com/~jason/20Newsgroups,.
3 http://csmining.org/index.php /r52-and-r8-of-reuters-21578.html.
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Table 1. Overview of datasets. |Z|: the number of categories

Dataset |Z| | Label terms (e.g.)
20 Newsgroups 20 | ‘politics’, ‘religion’, ‘electronics’,

(20NEWS) ‘motorcycles’, ‘baseball’, ‘sale’,

Reuters Multilingual | 6 | ‘corporate’, ‘finance’, ‘economics’,

(FR,SP,GR,IT) ‘performance’, ‘government’,
‘equity’
Reuters R8 (R8) 8 | ‘acquisition’, ‘interest’, ‘money’,

‘crude’, ‘trade’, 'grain’, - - -

Table 2. Hetero-lingual text classification test accuracy (%) on (1) the target task
and (2) the source task, given a fully labeled source dataset and a partially labeled
target dataset, averaged over 10-fold runs (M¢c = 320). %¢r,.: the percentage of target
samples labeled. The baselines are described in Fig. 2.

Datasets (1) Test: Target (%) (2) Test: Source (%)
Source  Target %r, WrWg:NN WrWe:SM Wr:NN Wr:SM -:SM WsWe:NN WsWe:SM Ws:NN Ws:SM -:SM
FR 57.7 46.1 55.7 444 394 78.2 77.1
. Sp 52.1* 43.0 46.6 42.7  43.8 77.8 77.3 . .
20NEWS GR 01 56.2% 44.2 51.1 41.0  37.7 78.5 77.3 780 T8 16
T 47.3 39.8 46.2 352 318 7.2 7.4
FR 56.5 42.1 55.6 444 394 97.0 96.9
SP 50.6* 43.5 46.6 42.7 438 97.2 96.8
R8 GR 0-1 57.8*% 45.1 51.1 41.0 37.7 97.0 96.8 972 9.6 96.7
IT 49.7 32.7 46.2 352 318 96.9 96.9
FR 44.7 35.2 86.1 86.0 85.9 86.0 86.0
Sp . 44.2 36.0 o 88.3 88.1 88.2 88.2 88.1
GR 20NEWS 1 43.3 35.5 444 37275 83.4 83.3 83.5 83.2 83.5
1T 44.9 34.1 85.5 85.3 85.3 85.1 85.1
FR 61.8 52.1 86.0 86.0 85.9 86.0 86.0
Sp 67.3% 52.3 - 88.3 88.1 88.2 88.2 88.1
GR RS 0.1 64.1 50.9 62.8 523 481 83.3 83.1 83.5 83.2 83.5
1T 62.0 54.7 85.4 85.2 85.3 85.1 85.1

and thus this result indicates that the heterogeneous transfer is not as reliable
if the target label space is more densely distributed than the source label space.
We observe that the nearest neighbor (NIN) classifiers outperform the soft-
max (SM) classifiers in general. This is because the objectives in Eq.1 aim at
learning a mapping such that each instance is mapped close to its respective
label term embedding (in terms of dot product similarity), thus making the
nearest neighbor-finding approach a natural choice. The networks with a soft-
max layer perform poorly on our target classification task, possibly due to the
small number of categorical training labels, making the task very challenging.
We also present the summary of cosine similarities in the embedded label
space between the source and the target label terms in Table 3, which approxi-
mates the inherent distance between the source and the target tasks. While the
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Table 3. Label terms (word embeddings) cosine similarities summary for heteroge-
neous dataset pairs.

Datasets Cosine similarity
max | min avg

20NEWS « FR,SP,GR,IT|0.460 —0.085 | 0.090

R8 < FR,SP,GR,IT 0.342 | —0.039 | 0.114

RS dataset tends to be more semantically related with the Reuters Multilingual
datasets than the 20 Newsgroups dataset on average, we only observe marginal
difference in their knowledge transfer performance, given the same respective
source or target dataset.

Note also that both WtW{f:SM and Wt:SM significantly outperform -:SM,
a single softmax layer that does not use the auxiliary class relations information
learned from word embeddings. This result demonstrates that the projection of
samples into the embedded label space improves the discriminative quality of
feature representation.

We observe that for a small portion of the target dataset neither helps nor
hurts the source classification task, showing no statistically significant difference
between the proposed approach (WsWT£:NN) and other baselines. The learned
W¢ can thus be considered as a robust projection that maps the intermediate
common subspace instances into the embedded label space which can describe
both the source and the target categories.

Feature visualization: To visualize the projection quality of the proposed app-
roach, we plot the t-SNE embeddings [18] of the source and the target instances
(R8—GR; %1, = 0.1), projected with W_WE:NN and W _:NN, respectively
(Fig. 3). We make the following observations: (1) The target instances are gen-
erally better discriminated with the projection learned from WtWTf:NIN which
transfers knowledge from the source dataset, than the one learned from Wt:NN.

(a) Source, Ws (b) Target, Wt  (c) Source, WsWT{f (d) Target, WtWf
Fig. 3. t-SNE visualization of the projected source (R8) and target (GR) instances,

where (a), (b) are learned without the transferred knowledge (W_:NN), and (c), (d)
use the transferred knowledge (W_W£:NN).
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Table 4. Comparison of performance (WtWf:NN) with varying intermediate embed-
ding dimensions, averaged over 10-fold runs.

Datasets Test Accuracy (%) vs. Mc¢

S T |20 |40 |80 |160 |320 |640
20NEWS | FR | 54.6 | 56.8 | 55.3 | 56.4 | 57.7 | 57.1
RS FR |55.9|54.3|55.1|57.0|56.5 | 56.7

(2) The projection quality of the source samples remains mostly the same. Both
of these observations accord with the results in Table 2.

Sensitivity to the embedding dimension: Table4 compares the perfor-
mance of the proposed approach (WtWf:NN) with varying embedding dimen-
sions (M¢) at the intermediate layer. We do not observe statistically significant
improvement for any particular dimension, and thus we simply choose the embed-
ding dimension that yields the highest average value on the two dataset pairs
(M¢ = 320) for all of the experiments.
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(a) 20NEWS — FR (b) R8 = FR  (c) FR — 20NEWS  (d) FR — RS

Fig. 4. Proactive transfer learning results. X-axis: the number of queried samples,
Y-axis: error rate. (Color figure Online)

Task 2: Proactive Transfer Learning
We consider a proactive transfer learning scenario, where we expand the
labeled target set by querying an oracle given a fixed budget. We compare the

proposed proactive transfer learning strategies (Sect.4.4) against the conven-
tional uncertainty-based sampling methods.

Setup: We choose 4 source-target dataset pairs to study: (a) 20NEWS—FR,
(b) R8—=FR, (c) FR—20NEWS, and (d) FR—RS&. The lines NN:MD (max-
imal marginal distribution overlap; solid black) and NN:PE (maximum pro-
jection entropy; dashed red) refer to the proposed proactive learning strategies
in Sect. 4.4, respectively, where the weights are learned with WtW{f:NN. The
baseline active learning strategies NN:E (entropy; dashdot green) and SM:E
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(entropy; dotted blue) select target samples that have the maximum class-
posterior entropy given the original target input features only, which quantifies
the uncertainty of samples in multiclass classification. The uncertainty-based
sampling strategies are widely used in conventional active learning [17,26], how-
ever these strategies do not utilize any information from the source domain.
Once the samples are queried, NN:E learns the classifier WtWf:INN, whereas
SM:E learns a 1-layer softmax classifier.

Main results: Figure4 shows the target task performance improvement over
iterations with various active learning strategies. We observe that both of the
proposed active learning strategies (NN:MD, NN:PE) outperform the base-
lines on all of the source-target dataset pairs. Specifically, NN:PE outper-
forms NIN:E on most of the cases, which demonstrates that reducing entropy in
the projected space is significantly more effective than reducing class-posterior
entropy given the original features. Because we re-train the joint network after
each query batch, avoiding information redundancy between source and tar-
get while reducing target entropy is critical. Note that NN:MD outperforms
NN:PE generally at the beginning, while the performance of NN:PE improves
faster as it gets more samples annotated. This result indicates that selecting
samples with the maximal source and target density overlap (MD) helps in
building a bridge for transfer of knowledge initially, while this information may
eventually get redundant, thus the decreased efficacy. Note also that the all of
the projection-based methods (NN:MD, NN:PE, NN:E) significantly outper-
form SM:E, which measures the entropy and learns the classifier at the original
feature space. This result demonstrates that the learned projections Wt Wpg
effectively encode input target features, from which we can build a robust clas-
sifier efficiently even with a small number of labeled instances.

6 Conclusions

We summarize our contributions as follows: We address a unique challenge of
mining and leveraging transferable knowledge in the heterogenous case, where
labeled source data differs from target data in both feature and label spaces. To
this end, (1) we propose a novel framework for heterogeneous transfer learning
to discover the latent subspace to map the source into the target space, from
which it simultaneously learns a shared final projection to the embedded label
space. (2) In addition, we propose a proactive transfer learning framework which
expands the labeled target data with the objective of actively improving transfer
accuracy and thus enhancing the target task performance. (3) An extensive
empirical evaluation on the hetero-lingual text classification task demonstrates
the efficacy of each part of the proposed approach.

Future Work: While the empirical evaluation was conducted on the text
domain, our formulation does not restrict the input domain to be textual. We
thus believe the approach can be applied broadly, and as future work, we plan to
investigate the transferability of knowledge with diverse heterogeneous settings,
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such as image-aided text classification tasks, etc., given suitable source and tar-
get data. In addition, extending the proposed approach for learning selectively
from multiple heterogeneous source datasets also remains as a challenge.
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